이 책은 통계학의 기본 모형인 선형 회귀모형, 로지스틱 모형, 확률분포와 연결하여 딥러닝을 이해할 수 있도록 설계되었다.
자연어처리 관련 딥러닝 모형은 복잡한 알고리즘으로 구성되어 있지만 이 책에 포함되었다.
이 책으로 빠르게 발전하고 있는 딥러닝의 모든 것을 알기 어렵지만 딥러닝을 이해하고 활용하는 출발점이 될 수 있다.
이 책은 10개 장으로 구성되어 있다. 제1장에서는 딥러닝의 개요, 제2장에서 제4장까지는 일반적 딥러닝의 작성과 특성을 살펴보았다.
제5장과 제6장에서는 이미지 인식, 객체 검출에 이용되는 합성곱 신경망을, 제7장은 GAN과 오토인코더 등 비지도 학습모형을 학습한다.
제8장에서는 시퀀스 데이터에 이용되는 순환신경망, LSTM 등을, 제9장에서는 자연어처리에서 활용되는 Word2Vec, Transformer, BERT에 대하여 설명하였다.
Transformer와 BERT 등은 알고리즘 중심으로 기술되어서 통계학 전공자가 이해하는 데 어려움이 있을 수 있지만
자연어처리에서 실제 이용되는 알고리즘이기 때문에 책에 포함하였다. 제10장에는 딥러닝을 구현하기 위한 Python 코드가 소개되어 있다.
이 책에서 Tensorflow-Keras 기반 기초 코드가 제공되고 있지만 딥러닝 코드 구현이 직접적인 목적은 아니다.
딥러닝을 구현하는 코드는 지속적으로 바뀌어서 공개되므로 관련 사이트를 확인하길 바란다.